[bookmark: _s9rz0py2taod]Higher Lower Game
[bookmark: _q6sc1shhur7t]Outline / Decomposition
1. Get user input and check that it’s valid (low number, high number, number of rounds, guess for a given number)
2. Randomly generate a ‘secret number’ between two integers
3. Compare user guesses to ‘secret’ number and give appropriate feedback (“too high” / “too low” / “Well done”)
4. Count user guesses and if user takes too many guesses tell them that they lose
5. Prevent user from entering duplicate guesses
6. Format feedback statements to make game easy to use
7. Loop game through a given number of rounds
8. Score mechanics, at end of each round tell user how many rounds, number of rounds won and lost
9. End game mechanics - at end of game show game stats (score for each round and then summary of best score, worst score and average score)
10. Loop (or end) entire game
11. Guess Calculator
[bookmark: _cpk8ihyqzhzu]Version Log
[image:]
[bookmark: _tv54k8mbuy2c]Component Testing
[bookmark: _ur6me0nyqqyq]1. Check User Input
[bookmark: _mz4bit9lxh1a]To check that low is an integer
[image:]
[image:]

To check that high is an integer that is more than low. (1 for testing purposes)
[image:]

[image:]

[bookmark: _bprybxfc96lp]To check that guess is an integer that is more than (or equal to) low <1 for testing purposes> and less than (or equal to) high <10 for testing purposes>
[image:]
[image:]

[bookmark: _jdfb35rwfmom]To check that rounds is an integer that is more than (or equal to) 1
[image:]

[image:]

Notes / Justification: I have decided not to ask my user to enter the number of guesses allowed each time as this can be quite tedious from their perspective. Instead my game will automatically calculate a reasonable number of guesses based on the upper / lower bounds that have been selected.

[bookmark: _3v22bgxh9cc5]2. Secret Number Generation

	Test Data
	Expected

	Low: 1
High: 4
Generate 20 number
	The program should generate 20 numbers between 1 and 4. Each of the numbers 1, 2, 3, and 4 should appear on the list

Note - I have chosen a very narrow range so that it is easy to confirm that my program will generate all the random numbers between the given ‘high’ and ‘low’ number.
[image:]
[bookmark: _9kz7pvul0ieg]
[bookmark: _jtkuhahwahpf]3. Compare user guess with secret number
The numbers in purple have been hard coded in for testing purposes.

	Test Data
	Expected

	Secret #: 7
Guess 1: 5
Guess 2: 8
Guess 3: 7
	
“Too low, try a higher number”
“Too high, try a lower number”
“Well done, you guessed the secret number!”

[image:]
[bookmark: _78qz4pk6bgpl]4. Win / Loss Mechanics
The numbers in purple have been hard coded in for testing purposes.

	Test Data
	Expected

	Secret #: 7
Number of Guesses: 2
Guess 1: 5
Guess 2: 8

	“Too low, try a higher number”
Guesses Left: 1

“Too high”
“Sorry you lose the game as you have run out of guesses”

	Secret #: 7
Number of Guesses: 4
Guess 1: 5
Guess 2: 8
Guess 3: 7
	“Too low, try a higher number”
Guesses Left: 3

“Too high, try a lower number”
Guesses Left: 2

Well done!
You got it in 3 guesses

[image:]

[bookmark: _3zb1qhn5vn4p]5. Prevent Duplicate Guesses
The numbers in purple have been hard coded in for testing purposes.

	Test Data
	Expected

	Secret #: 7
Number of Guesses: 4
Guess 1: 5
Guess 2: 8
Guess 3: 8
Guess 4: 7
	“Too low, try a higher number”
Guesses Left: 3

“Too high, try a lower number”
Guesses Left: 2

“You have already guessed that number! Please try again”
Guesses Left: 2

Well done! You got it in 3 guesses

Notes / Justification: To encourage users to play the game I have decided not to count duplicate guesses. If a user enters a previously guessed number by mistake the program will tell them to try again and the duplicate guess will not be counted.
[image:]

[bookmark: _d0xg7jh8j9n8]6. Format Feedback Statements...
The numbers in purple have been hard coded in for testing purposes.
	Test Data
	Expected

	Set up print statements to print message for…

Too low
Too high
Duplicate entry
Correct
	^^
^^ Too low, try a higher number. | Guesses Left: 3 ^^
^^

vvv
vv Too high, try a lower number. | Guesses Left: 2 vv
vvv

!!!
!! You already guessed that # Please try again. | Guesses Left: 2 !!
!!

*** Well done! You got it in 3 guesses ***

[image:]

[bookmark: _20ohak5xs1i9]7. Round Counter

	Test Data
	Expected

	How many rounds? 3

Round 1 <press enter>
Round 2 <press enter>
Round 3 <press enter>

	

Rounds Played: 1
Rounds Played: 2
Rounds Played: 3

You have gotten to the end of the game.

[image:]

[bookmark: _tnuwx44l58ie]8. Score Mechanics
The numbers in purple have been hard coded in for testing purposes.

	Test Data
	Expected

	Secret #: 7
Number of Guesses: 4

How many rounds? 3

Round 1
2, 3, 4, 7

Round 2
2, 3, 4, 5,

Round 3
2, 7

	

Round 1
Too low <3>, too low <2>, too low <1>, well done, you got it in 4 guesses
Won: 1 | Lost: 0

Round 2
Too low <3>, too low <2>, too low <1>, sorry you have run out of guesses
Won: 1 | Lost: 1

Round 3
Too low <3>, well done, you got it in 2 guesses
Won: 2 | Lost: 1

[image:]
[bookmark: _rkv51sjge088]9. End Game Mechanics
The numbers in purple have been hard coded in for testing purposes.
	Test Data
	Expected

	Secret #: 7
Number of Guesses: 4

How many rounds? 3

Round 1
2, 3, 4, 7

Round 2
2, 3, 4, 5,

Round 3
2, 7

	

Round 1
Too low <3>, too low <2>, too low <1>, well done, you got it in 4 guesses
Won: 1 | Lost: 0

Round 2
Too low <3>, too low <2>, too low <1>, sorry you have run out of guesses
Won: 1 | Lost: 1

Round 3
Too low <3>, well done, you got it in 2 guesses
Won: 2 | Lost: 1

*** Game Statistics ****

Round 1: 4 (won)
Round 2: 5 (lost, ran out of guesses)	Comment by Jennifer Gottschalk: Added an extra penalty point if user runs out of guesses
Round 3: 2 (won)

*** Summary Statistics ***
Best Score: 2
Worst Score: 4 5
Average Score: 3.33 3.67

Notes / Justification: If the user runs out of guesses I will add a penalty point to their score. This has been done as it easily allows me to indicate if a given round has been won or lost.

[image:]

[bookmark: _cqg15bjhzdxm]10. Loop entire game

	Test Data
	Expected

	How many rounds? 3

Round 1 <press enter>
Round 2 <press enter>
Round 3 <press enter>

<enter>

How many rounds? 1

Round 1 <press enter>

Press <enter> to play again or any key to quit <n>

	

Rounds Played: 1
Rounds Played: 2
Rounds Played: 3

You have gotten to the end of the game. Press enter to play again or any key to quit…
<loops>

Rounds Played: 1

You have gotten to the end of the game. Press enter to play again or any key to quit…
<ends>

Notes - My testing screenshot looks different to the above plan as I recycled my component 9 code and made the entire program loop. Happily I can confirm that program loops (and stops looping) correctly.

[image:]

[bookmark: _3mlgxdk2vl82]11. Guess Calculator
If we use a binary search strategy to solve the problem, the maximum number of guesses needed will be log2<range>. Basically we expect users to guess the middle of the range. When they are told ‘higher’ (or ‘lower’) they discard half of the possible guesses. This process of halving is repeated until the correct number is found. I used an online log calculator for the test data in the table below.
https://www.logcalculator.net/log-2

Notes / Justification: The maximum number of guesses needed should be log2range rounded up. To be kind to my users, I have decided to round up and add and extra guess just in case. Note that the range is (high - low) + 1

	Test Data
	Expected

	Low: 1
High: 10

Low: 1
High: 20

Low: 1
High: 100

Low 1:
High: 200
	Max Guesses: 3.3 -- > 4, plus 1 ⇒ 5

Max Guesses: 4.3 -- > 5, plus 1 ⇒ 6

Max Guesses: 6.6 -- > 7, plus 1 ⇒ 8

Max Guesses: 7.6 -- > 8, plus 1 ⇒ 9

[image:]
[bookmark: _7vf8extmntsz]Assembled Outcome Testing
For testing purposes we will print the ‘secret’ number!

	Test Data
	Expected

	Low? 1
High? 10
How many rounds? 3

Round 1
Guess incorrectly 3 times and then guess correctly

Round 2
Guess incorrectly 5 times,

Round 3
Guess it first time

Again? <enter>

Low? 1
High? 10
How many rounds? 1

Round 1
Guess it first time

Again? <n>

	Should allow user 5 guesses

Round 1
Program should give correct feedback (too high / too low) three times and it should then say ‘congratulations)
Won: 1 | Lost: 0

Round 2
Program should give correct feedback each time and say ‘you lose’ after five guesses.
Won: 1 | Lost: 1

Round 3
“Congratulations you got it in one guess”
Won: 2 | Lost: 1

*** Game Statistics ****

Round 1: 4 (won)
Round 2: 6 (lost, ran out of guesses)
Round 3: 1 (won)

*** Summary Statistics ***
Best Score: 1
Worst Score: 5
Average Score: 3.67

<loops>

Round 1
“Congratulations you got it in one guess”
Won: 1 | Lost: 0

*** Game Statistics ****

Round 1: 1 (won)

*** Summary Statistics ***
Best Score: 1
Worst Score: 1
Average Score: 1
<ends>

[image:]
[image:]
[bookmark: _xn7t3g59l9cx]Usability Testing

· Added introduction with clear instructions on how to play the game
· Added a round counter which displays at the start of each round and shows how many games have been played and the number of available guesses (eg: round 1 of 3, 8 guesses left)
· I noticed that my users sometimes chose weird upper / lower bounds so on the first guess of each round, they are asked to choose an integer between the bounds that they chose
[bookmark: _eecm6wj3zxqi]Post Usability Test…
This is the final version of the game so the secret number will NOT be displayed.
	Test Data
	Expected

	Game 1:
Low: 1
High: 10
Rounds: 3

Again? <enter>

Game 2:
Low: 1
HIgh: 10
Rounds 1

Again? <n>
	At start instructions should display (this should only happen once)

Game 1 should consist of 3 rounds where the the secret number is between one and 10. At the start of each round it should state which round is being played. The first ‘guess’ should ask me to guess a number between 1 and 10. Subsequent guesses in that round should simply say ‘Guess’. After each guess the game should tell me if I need to go higher, lower or have found the answer. It should also state how many guesses are left in the feedback. At the end of each round it should state my win / loss statistics. At the end of the game the entire game statistics (best, worst and average) should be displayed.

<loops>

The second game should be similar to the first game but should only have one round. <ends>

[image:]
[image:]
[bookmark: _qq2hq0u2ie7u]Social and End User Considerations…

How did you ensure that your task was suitable for your chosen audience?
· The program is completely customisable so users can choose the range - allowing them to make the game as easy / hard as desired

How have you honoured copyright?
There were no copyright issues with this game as I did not use any external sources for questions / information and I developed the code myself.
How did you make your quiz easy to use?
· There are clear instructions at the start of the game telling users what to do
· There is clear feedback which includes the number of rounds and guesses left
· If users put in an invalid response, they get an error message telling them how to fix their mistake
· The game has been laid out so that it is easy to read / understand
Level 6 Digital Technologies & Hangarau Matihiko
Teaching and Learning programme 1 - Planning & Programming (Python)
image17.png

image11.png

image8.png

image10.png

image6.png

image4.png

image1.png

image3.png

image13.png

image2.png

image20.png

image9.png

image18.png

image21.png

image22.png

image5.png

image12.png

image7.png

image14.png

image16.png

image23.png

image15.png

image19.png

